USD Authoring and Advanced Features
/

|
'
©DisneydPixar

USD Authoring & More

Authoring API and Authoring Performance
USD’s File Formats

Native Scene Graph Instancing

Value Clips

Dynamic File Formats

Authoring USD

“Authoring” means writing to USD layers (typically .usd files)

Create Prims

Create & Set Attributes

Add Composition Structures

Creating Prims

// UsdStage: :DefinePrim() works a bit like mkdir -p.

stage->DefinePrim(SdfPath(“/foo/bar”));

v

def "foo"

{
def "bar"
{
}

First: Code is C++, but everything is available in Python too.

This is a nice way to programmatically build up prim hierarchies.

Creating Prims

// UsdStage::0verridePrim() for overrides. Does not cause the prim to exist; opinions
// apply if the prim exists in the final composition.

stage->0verridePrim(SdfPath(“/foo/baz/qux”));

\

def "foo"

def "bar"

{
¥

over “baz”

{

over “qux”

{

‘“def” vs “over”

def “This prim exists.”

over : “Apply these opinions only if this prim exists.”

def: short for ‘define’ — intent is to create a prim. Default traversals will visit these prims.

over: short for ‘override’ — intent is to apply opinions if another layer ‘def’s in the composition.

Creating Typed Prims

// SchemaClass::Define() creates typed prims. It returns the “schema object” with
// domain-specific API.

UsdGeomSphere earthl|= UsdGeomSphere: :Define(stage, SdfPath(“/planet/earth”));

def "planet"

{
def Sphere “earth"
{
}

Schema Object vs Prim

// UsdGeomSphere is a Schema Class.
// It wraps a UsdPrim and has domain-specific API.
UsdGeomSphere earth = UsdGeomSphere: :Define(stage, SdfPath(“/planet/earth”));

// Obtain underlying UsdPrim from schema object.
UsdPrim earthPrim = earth.GetPrim();

// Create a schema object to use domain-specific API.
UsdGeomGprim earthAsGprim(earthPrim);

// Bool-operator on UsdPrim checks object validity (Does this prim still exist?)
if (earthPrim) { printf(“earth is safe\n”); }

// Bool-operator on Schema objects additionally checks schema compatibility.
if (earthAsGprim) { printf(“earth is a gprim\n”); }

UsdLuxLight earthShine(earthPrim);
assert(!earthShine); // earthPrim is not a light.

<at end> Schema classes do not check validity on use, so you can use them to author schema-specific data on prims that do not yet adhere to the schema.

Editing Attributes

// SchemaClass::CreateXXXAttr() to author “built-in” schema-defined attributes.
UsdAttribute radius = earth.CreateRadiusAttr();

radius.Set(637.1e6);

#usda 1.0

def "planet"
{

def Sphere “earth"
{

}

double radius = 637100000

<end> By default USD’s linear units are centimeters, but layer metadata ‘metersPerUnit’ can indicate different units.

Editing Attributes

// UsdPrim::CreateAttribute() to make non-schema-defined
// attributes, or for lower-level control.

UsdAttribute numTrees = earth.GetPrim().CreateAttribute(
TfToken(“numTrees”), SdfValueTypeNames->Int64);
numTrees.Set(300000000000011) ;

\

#usda 1.0
def "planet"

def Sphere “earth"

{
custom int64 numTrees = 3000000000000
double radius = 637100000

Editing Composition

e API Objects for Each Composition Operator

UsdInherits

UsdVariantSets| |UsdVariants

UsdReferences
UsdPayloads

UsdSpecializes

e Each Provides List Editing Operations (Add / Remove / Set / Clear)

Creating References

UsdPrim rock = stage->DefinePrim(SdfPath(“/rock”));

stage->DefinePrim(SdfPath(“/rl1”)).GetReferences().AddInternalReference(rock.GetPath());
stage->DefinePrim(SdfPath(“/r2”)).GetReferences().AddInternalReference(rock.GetPath());

v

def "rock"
{
}

def "rl1" (prepend references = </rock>)
{
}

def "r2" (prepend references = </rock>)
{
}

Creating Variants

UsdPrim kid = stage->DefinePrim(SdfPath(“/TwoYearOld”));
UsdVariantSet mood = kid.GetVariantSets().AddVariantSet(“mood”);

mood.AddVariant(“elation”);
mood.AddVariant(“anguish”);

def "TwoYearOld" (
prepend variantSets = "mood"
)
{
variantSet "mood" = {
“anguish" {

"elation" {

Edit Targets

e Stages compose many layers. Where do edits go?
o Stages have a current “Edit Target” (class UsdEditTarget)

e Edit Targets Direct Authoring

Y

To different Layers Across Composition Arcs With Time Shift & Scale

Or Any Combination
7

Inside a Variant,
Across a Reference,

In the fourth Sublayer,
with a TimeCode shift.

Editing Session Layer

UsdPrim ghost = stage->DefinePrim(SdfPath(‘“/Ghost”));
{

// Temporarily redirect authoring to the stage’s session layer.

UsdEditContext ctx(stage, UsdEditTarget(stage->GetSessionLayer()));
UsdGeomImageable(ghost) .MakeInvisible();
}

// Stage’s EditTarget now restored to root layer.

root layer # session layer

def “Ghost”
{
}

over “Ghost”

token visibility = “invisible”

First what is a Session Layer? By default UsdStages have a special in-memory layer that’s stronger than all other layers, intended for temporary overrides that are usually
not saved. Like a scratch space. When you toggle prim visibility in usdview, those edits go to the session layer.

Editing Variants

UsdVariantSet mood = kid.GetVariantSets().GetVariantSet(“mood”);
mood.SetVariantSelection(“elation”);

{
UsdEditContext ctx(mood.GetVariantEditContext());
kid.SetDocumentation(“just given a cookie”);

mood.SetVariantSelection(“anguish”);

UsdEditContext ctx(mood.GetVariantEditContext());
kid.SetDocumentation(“finished eating cookie”);

def "TwoYearOld" (
prepend variantSets =

tSet "mood" = {
"elation" (doc = “just given a cookie”) {

“anguish" (doc = “finished eating cookie”) {

Edit Targets

Edit Targets are powerful and general

Get a Prim’s PcpPrimIndex and walk composition structure

Construct Edit Targets from PcpNodeRefs to edit anywhere

Check out new higher-level UsdPrimCompositionQuery coming soon!

Project Idea: build a GUI to select EditTargets

Authoring Performance

USD’s authoring performance is an area for improvement.

Optimized for Reading. We read a /ot more than we write.

Presto heritage; originally a rigging and animation tool.

e Emphasized interactive response to single control changes.

USD responds to changes live as they are made.

== Authoring Perf Tips & Tricks

e Avoid too many sibling prims

e Lists of names rebuilt per change

e Adding siblings has O(n2) behavior

e Use grouping over 10,000s

group1

prim1

prim1000

group1000

prim999000

prim1000000

Change Blocks

e SdfChangeBlock defers notification from Sdf (layers) to Usd (stages)

e Avoids USD’s live updates: much faster, but no safety net!

e Usd doesn’t “see” changes, so it can be in an inconsistent state

e Cannot safely use USD API while SdfChangeBlocks are active

e Use Sdf API to write directly to SdfLayers

e Best option for bulk prim creation today

Change Block Caveats

Need to know Schema data encoding
Can observe by using the Schema APIs and viewing the resulting .usda
Also try setting TF_DEBUG=SDF_CHANGES

Notification & updates proceed when SdfChangeBlock goes out of scope

== Authoring Perf Tips & Tricks

Look for better & faster editing options coming in the future

USD’s Native File Formats

.usda Text File Format

.usdc “Crate” Binary File Format

Use the ‘.usd’ extension with either usda or usdc

e Swap binary for text assets without breaking references

Both support all USD data (use usdcat -o to convert)

Both are lossless

USDZ

e Archive file format co-developed with Apple for network transmission
e Is USD running in your pocket?
e Contains USD files with textures and other assets

e Useful in VFX for packaging and sharing assets across sites

USDA Features

Great for assembling & positioning assets with References & SublLayers

Human readable, editable in a text editor

Fully read into memory when opened

#usda 1.0

defaultPrim = "Kitchen_set"
upAxis = "Z"

def Xform "Kitchen_set" (
kind = "assembly"

)

{
def Xform "Arch_grp" (

kind = "group"
)

def "Kitchen_1" (
add references = @./assets/Kitchen/Kitchen.usd@
)

double3 xformOp:translate = (71.10783386230469, -43.28064727783203, -1.8192274570465088)
uniform token[] xformOpOrder = ["xformOp:translate"]

}

USDC Features

Good for everything except human readability & text editing
Efficiently encoded, lossless compression
Reads only prim and property hierarchy when opened

Attribute values & time samples read on-demand

USDC Features

e Zero-copy Arrays: memory-mapped data
e Points to memory in OS page cache, OS fetches on-demand
e Deduplicates data on Save()

e Data grouped by TimeCode in increasing order

e Locality for Renders 1 2 . 4 8 6

e Sequential reads for Playback 1 ... 5 6

Plugin File Formats

¢ Native support for Alembic files

e usdview them or reference them into other usd files

e Write your own!

Advanced USD Features

e Native Scene Graph Instancing (not UsdGeomPointInstancer)

e Value Clips

e Dynamic File Formats

Native Instancing

e Declare Prims intended to be instanced with (instanceable = true) metadatum

e Usd runtime determines which ‘instanceable’ prims can be shared

Composition Arcs
|:| Variant Selections

Load/Unload State

Population Mask

Native Instancing

e Prims with equal keys composed just once ,
instance

e Share a generated Master prim hierarchy
instance? 1 master

e Local overrides on instance root prims allowed
instance3 child1

e Local overrides on descendant prims ignored

child2
e UsdPrim API: IsInstance() and GetMaster ()

e Full nested instancing supported

Native Instancing

e Most efficient way to process a UsdStage with instancing:

e Call stage->GetMasters () and process all upfront or:

e Call prim.GetMaster () during traversal and process if not yet seen
e Most convenient way to process a UsdStage with instancing:

e Use Instance Proxies to pretend instancing doesn’t exist

Instance Proxies

¢ Instance Proxies are read-only UsdPrims that forward queries to their Master

e Modify Prim traversal predicates by calling TraverseInstanceProxies()

Traversal without Proxies Traversal with Proxies

instance master { instance ’* master

child1 child1 child1

child2 child2 chila2

Native Instancing

Dynamically generated Masters; cannot be edited

Explicit Instancing with Implicit Masters

Many exiting ways to share scene description via composition

¢ Inherits are a good way to broadcast “master” opinions to instances

Want the perf gain, not a new sharing mechanism

Value Clips

Assemble, re-sequence, re-time animation from many “clip” layers

Pull (only) time samples from other USD files

e All other values (and composition) ignored

Can be sequenced explicitly, or use templates (like path/fileName.###.usd)

Use usdstitchclips utility to assemble clips together

This is really useful for certain workflows, like FX and crowds

Value Clips Example

/Cllp_o n
assetPaths ic"p'l n

prim1

active = [(0,0), (5,1), (8,2)
times = [(0,0), (5,0), (8,0)

cip2 [o]1|z]afefs]e]r

prim1’s timeSamples on the Composed Stage

OEOEE HBODEEEDG

primPath = ‘/prim1’

Dynamic File Formats

Generate scene description parameterized by scene inputs

Get composed “argument” values into your file format plugin

e Currently restricted to custom plugin-registered metadata

File format invoked to regenerate content when values change

Careful! Must be “pure” and be thread-safe for concurrent readers

Example

#usda 1.0

(
endTimeCode = 200
startTimeCode = 0

Dictionary value metadata field that provides all the parameters to
generate the layer in the payload. Change these values to change the
contents of the file.
Usd_DCE_Params = {

int perSide = 15

int framesPerCycle = 36

int numFrames = 200

double distance = 6.0

double moveScale = 1.5

token geomType = "Cube"

