
Alex Mohr

USD Authoring and Advanced Features

©Disney/Pixar

USD Authoring & More

• Authoring API and Authoring Performance

• USD’s File Formats

• Native Scene Graph Instancing

• Value Clips

• Dynamic File Formats

Authoring USD

• “Authoring” means writing to USD layers (typically .usd files)

• Create Prims

• Create & Set Attributes

• Add Composition Structures

Creating Prims

def "foo"
{
 def "bar"
 {
 }
}

// UsdStage::DefinePrim() works a bit like mkdir -p.

stage->DefinePrim(SdfPath(“/foo/bar”));

First: Code is C++, but everything is available in Python too.

This is a nice way to programmatically build up prim hierarchies.

Creating Prims

def "foo"
{
 def "bar"
 {
 }

 over “baz”
 {
 over “qux”
 {
 }
 }
}

// UsdStage::OverridePrim() for overrides. Does not cause the prim to exist; opinions
// apply if the prim exists in the final composition.

stage->OverridePrim(SdfPath(“/foo/baz/qux”));

“def” vs “over”

def

over

“This prim exists.”

“Apply these opinions only if this prim exists.”

def: short for ‘define’ — intent is to create a prim. Default traversals will visit these prims.

over: short for ‘override’ — intent is to apply opinions if another layer ‘def’s in the composition.

Creating Typed Prims

def "planet"
{
 def Sphere “earth"
 {
 }
}

// SchemaClass::Define() creates typed prims. It returns the “schema object” with
// domain-specific API.

UsdGeomSphere earth = UsdGeomSphere::Define(stage, SdfPath(“/planet/earth”));

Schema Object vs Prim
// UsdGeomSphere is a Schema Class.
// It wraps a UsdPrim and has domain-specific API.
UsdGeomSphere earth = UsdGeomSphere::Define(stage, SdfPath(“/planet/earth”));

// Obtain underlying UsdPrim from schema object.
UsdPrim earthPrim = earth.GetPrim();

// Create a schema object to use domain-specific API.
UsdGeomGprim earthAsGprim(earthPrim);

// Bool-operator on UsdPrim checks object validity (Does this prim still exist?)
if (earthPrim) { printf(“earth is safe\n”); }

// Bool-operator on Schema objects additionally checks schema compatibility.
if (earthAsGprim) { printf(“earth is a gprim\n”); }

UsdLuxLight earthShine(earthPrim);
assert(!earthShine); // earthPrim is not a light.

<at end> Schema classes do not check validity on use, so you can use them to author schema-specific data on prims that do not yet adhere to the schema.

Editing Attributes

#usda 1.0

def "planet"
{
 def Sphere “earth"
 {
 double radius
 }
}

// SchemaClass::CreateXXXAttr() to author “built-in” schema-defined attributes.

UsdAttribute radius = earth.CreateRadiusAttr();

radius.Set(637.1e6);

#usda 1.0

def "planet"
{
 def Sphere “earth"
 {
 double radius = 637100000
 }
}

<end> By default USD’s linear units are centimeters, but layer metadata ‘metersPerUnit’ can indicate different units.

Editing Attributes

#usda 1.0

def "planet"
{
 def Sphere “earth"
 {
 custom int64 numTrees = 3000000000000
 double radius = 637100000
 }
}

// UsdPrim::CreateAttribute() to make non-schema-defined
// attributes, or for lower-level control.

UsdAttribute numTrees = earth.GetPrim().CreateAttribute(
 TfToken(“numTrees”), SdfValueTypeNames->Int64);
numTrees.Set(3000000000000ll);

Editing Composition
• API Objects for Each Composition Operator

UsdInherits

UsdVariantSets UsdVariants

UsdReferences

UsdPayloads

UsdSpecializes

• Each Provides List Editing Operations (Add / Remove / Set / Clear)

Creating References
UsdPrim rock = stage->DefinePrim(SdfPath(“/rock”));

stage->DefinePrim(SdfPath(“/r1”)).GetReferences().AddInternalReference(rock.GetPath());
stage->DefinePrim(SdfPath(“/r2”)).GetReferences().AddInternalReference(rock.GetPath());

def "rock"
{
}

def "r1" (prepend references = </rock>)
{
}

def "r2" (prepend references = </rock>)
{
}

Creating Variants
UsdPrim kid = stage->DefinePrim(SdfPath(“/TwoYearOld”));
UsdVariantSet mood = kid.GetVariantSets().AddVariantSet(“mood”);

mood.AddVariant(“elation”);
mood.AddVariant(“anguish”);

def "TwoYearOld" (
 prepend variantSets = "mood"
)
{
 variantSet "mood" = {
 “anguish" {
 }
 "elation" {
 }
 }
}

Edit Targets
• Stages compose many layers. Where do edits go?

• Stages have a current “Edit Target” (class UsdEditTarget)

• Edit Targets Direct Authoring

To different Layers Across Composition Arcs With Time Shift & Scale

Or Any Combination

Inside a Variant,

Across a Reference,

In the fourth Sublayer,

with a TimeCode shift.

Editing Session Layer
UsdPrim ghost = stage->DefinePrim(SdfPath(“/Ghost”));
{
 // Temporarily redirect authoring to the stage’s session layer.
 UsdEditContext ctx(stage, UsdEditTarget(stage->GetSessionLayer()));
 UsdGeomImageable(ghost).MakeInvisible();
}
// Stage’s EditTarget now restored to root layer.

root layer

def “Ghost”
{
}

session layer

over “Ghost”
{
 token visibility = “invisible”
}

First what is a Session Layer? By default UsdStages have a special in-memory layer that’s stronger than all other layers, intended for temporary overrides that are usually
not saved. Like a scratch space. When you toggle prim visibility in usdview, those edits go to the session layer.

Editing Variants
UsdVariantSet mood = kid.GetVariantSets().GetVariantSet(“mood”);
mood.SetVariantSelection(“elation”);
{
 UsdEditContext ctx(mood.GetVariantEditContext());
 kid.SetDocumentation(“just given a cookie”);
}
mood.SetVariantSelection(“anguish”);
{
 UsdEditContext ctx(mood.GetVariantEditContext());
 kid.SetDocumentation(“finished eating cookie”);
}

def "TwoYearOld" (
 prepend variantSets = "mood"
)
{
 variantSet "mood" = {
 "elation" (doc = “just given a cookie”) {
 }
 “anguish" (doc = “finished eating cookie”) {
 }
 }
}

Edit Targets

• Edit Targets are powerful and general

• Get a Prim’s PcpPrimIndex and walk composition structure

• Construct Edit Targets from PcpNodeRefs to edit anywhere

• Check out new higher-level UsdPrimCompositionQuery coming soon!

• Project Idea: build a GUI to select EditTargets

Authoring Performance

• USD’s authoring performance is an area for improvement.

• Optimized for Reading. We read a lot more than we write.

• Presto heritage; originally a rigging and animation tool.

• Emphasized interactive response to single control changes.

• USD responds to changes live as they are made.

Authoring Perf Tips & Tricks

• Avoid too many sibling prims

• Lists of names rebuilt per change

• Adding siblings has O(n2) behavior

• Use grouping over 10,000s

prim1

prim1000000

.

group1

prim1

prim1000

. . .

group1000

prim999000

prim1000000

. . .

Change Blocks

• SdfChangeBlock defers notification from Sdf (layers) to Usd (stages)

• Avoids USD’s live updates: much faster, but no safety net!

• Usd doesn’t “see” changes, so it can be in an inconsistent state

• Cannot safely use USD API while SdfChangeBlocks are active

• Use Sdf API to write directly to SdfLayers

• Best option for bulk prim creation today

Change Block Caveats

• Need to know Schema data encoding

• Can observe by using the Schema APIs and viewing the resulting .usda

• Also try setting TF_DEBUG=SDF_CHANGES

• Notification & updates proceed when SdfChangeBlock goes out of scope

Authoring Perf Tips & Tricks

Look for better & faster editing options coming in the future

USD’s Native File Formats

• .usda Text File Format

• .usdc “Crate” Binary File Format

• Use the ‘.usd’ extension with either usda or usdc

• Swap binary for text assets without breaking references

• Both support all USD data (use usdcat -o to convert)

• Both are lossless

USDZ

• Archive file format co-developed with Apple for network transmission

• Is USD running in your pocket?

• Contains USD files with textures and other assets

• Useful in VFX for packaging and sharing assets across sites

USDA Features
• Great for assembling & positioning assets with References & SubLayers

• Human readable, editable in a text editor

• Fully read into memory when opened
#usda 1.0
(
 defaultPrim = "Kitchen_set"
 upAxis = "Z"
)

def Xform "Kitchen_set" (
 kind = "assembly"
)
{
 def Xform "Arch_grp" (
 kind = "group"
)
 {
 def "Kitchen_1" (
 add references = @./assets/Kitchen/Kitchen.usd@
)
 {
 double3 xformOp:translate = (71.10783386230469, -43.28064727783203, -1.8192274570465088)
 uniform token[] xformOpOrder = ["xformOp:translate"]
 }

USDC Features

• Good for everything except human readability & text editing

• Efficiently encoded, lossless compression

• Reads only prim and property hierarchy when opened

• Attribute values & time samples read on-demand

USDC Features

• Zero-copy Arrays: memory-mapped data

• Points to memory in OS page cache, OS fetches on-demand

• Deduplicates data on Save()

• Data grouped by TimeCode in increasing order

• Locality for Renders

• Sequential reads for Playback

1 2 3 4 65

1 2 3 4 65

Plugin File Formats

• Native support for Alembic files

• usdview them or reference them into other usd files

• Write your own!

Advanced USD Features

• Native Scene Graph Instancing (not UsdGeomPointInstancer)

• Value Clips

• Dynamic File Formats

Native Instancing
• Declare Prims intended to be instanced with (instanceable = true) metadatum

• Usd runtime determines which ‘instanceable’ prims can be shared

Composition Arcs

Variant Selections

Load/Unload State

Population Mask

Instancing Key

Native Instancing

• Prims with equal keys composed just once

• Share a generated Master prim hierarchy

• Local overrides on instance root prims allowed

• Local overrides on descendant prims ignored

• UsdPrim API: IsInstance() and GetMaster()

• Full nested instancing supported

instance2 master

child1

child2

instance3

instance1

Native Instancing

• Most efficient way to process a UsdStage with instancing:

• Call stage->GetMasters() and process all upfront or:

• Call prim.GetMaster() during traversal and process if not yet seen

• Most convenient way to process a UsdStage with instancing:

• Use Instance Proxies to pretend instancing doesn’t exist

Instance Proxies
• Instance Proxies are read-only UsdPrims that forward queries to their Master

• Modify Prim traversal predicates by calling TraverseInstanceProxies()

instance master

child1

child2

Traversal without Proxies

instance master

child1

child2

child1

child2

Traversal with Proxies

Native Instancing

• Dynamically generated Masters; cannot be edited

• Explicit Instancing with Implicit Masters

• Many exiting ways to share scene description via composition

• Inherits are a good way to broadcast “master” opinions to instances

• Want the perf gain, not a new sharing mechanism

Value Clips

• Assemble, re-sequence, re-time animation from many “clip” layers

• Pull (only) time samples from other USD files

• All other values (and composition) ignored

• Can be sequenced explicitly, or use templates (like path/fileName.###.usd)

• Use usdstitchclips utility to assemble clips together

This is really useful for certain workflows, like FX and crowds

Value Clips Example

prim1

0 1 2 3 4clip_0

0 1 2clip_1

0 1 2 3 4 5 6 7clip_2

assetPaths
active = [(0,0), (5,1), (8,2)

8 9 10 11 12 13 14 150 1 2 3 4 5 6 7

times = [(0,0), (5,0), (8,0)

primPath = ‘/prim1’

prim1’s timeSamples on the Composed Stage

Dynamic File Formats

• Generate scene description parameterized by scene inputs

• Get composed “argument” values into your file format plugin

• Currently restricted to custom plugin-registered metadata

• File format invoked to regenerate content when values change

• Careful! Must be “pure” and be thread-safe for concurrent readers

Example
#usda 1.0
(
 endTimeCode = 200
 startTimeCode = 0
)

def "Root" (
 # Dictionary value metadata field that provides all the parameters to
 # generate the layer in the payload. Change these values to change the
 # contents of the file.
 Usd_DCE_Params = {
 int perSide = 15
 int framesPerCycle = 36
 int numFrames = 200
 double distance = 6.0
 double moveScale = 1.5
 token geomType = "Cube"
 }
 # Payload to the dynamic file. The file must exist but its contents are
 # irrelevant as everything is generated from parameters above.
 payload = @./empty.usddancingcubesexample@
)
{
}

Example

